
8.  t  
Modus ponens using Step 6 and 

        7 

 

 

 

Proof of contradiction: 

 

The "Proof by Contradiction" is also known as reductio ad absurdum, which is probably 

Latin for "reduce it to something absurd". 

 

Here's the idea: 

1. Assume that a given proposition is untrue. 

2. Based on that assumption reach two conclusions that contradict each other. 

 
 

This is based on a classical formal logic construction known as Modus Tollens: If P implies Q 

and Q is false, then P is false. In this case, Q is a proposition of the form (R and not R) which is 

always false. P is the negation of the fact that we are trying to prove and if the negation is not 

true then the original proposition must have been true. If computers are not "not stupid" then  

they are stupid. (I hear that "stupid computer!" phrase a lot around here.) 

 

Example: 

Lets prove that there is no largest prime number (this is the idea of Euclid's original 

proof). Prime numbers are integers with no exact integer divisors except 1 and 

themselves. 

1. To prove: "There is no largest prime number" by contradiction. 

2. Assume: There is a largest prime number, call it p. 

 

3. Consider the number N that is one larger than the product of all of the primes smaller 

than or equal to p. N=1*2*3*5*7*11...*p + 1. Is it prime? 

4. N is at least as big as p+1 and so is larger than p and so, by Step 2, cannot be prime. 

5. On the other hand, N has no prime factors between 1 and p because they would all leave 

a remainder of 1. It has no prime factors larger than p because Step 2 says that there are no 

primes larger than p. So N has no prime factors and therefore must itself be prime (see note 

below). 

We have reached a contradiction (N is not prime by Step 4, and N is prime by Step 5) and 

therefore our original assumption that there is a largest prime must be false. 

Note: The conclusion in Step 5 makes implicit use of one other important theorem: The 

Fundamental Theorem of Arithmetic: Every integer can be uniquely represented as the product 

of primes. So if N had a composite (i.e. non-prime) factor, that factor would itself have prime 

factors which would also be factors of N. 
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Automatic Theorem Proving: 

 

Automatic Theorem Proving (ATP) deals with the development of computer programs that show 

that some statement (the conjecture) is a logical consequence of a set of statements (the axioms 

and hypotheses). ATP systems are used in a wide variety of domains. 

The language in which the conjecture, hypotheses, and axioms (generically known as formulae) 

are written is a logic, often classical 1st order logic, but possibly a non-classical logic and 

possibly a higher order logic. These languages allow a precise formal statement of the necessary 

information, which can then be manipulated by an ATP system. This formality is the underlying 

strength of ATP: there is no ambiguity in the statement of the problem, as is often the case when 

using a natural language such as English. 

 
 

ATP systems are enormously powerful computer programs, capable of solving immensely 

difficult problems. Because of this extreme capability, their application and operation sometimes 

needs to be guided by an expert in the domain of application, in order to solve problems in a 

reasonable amount of time. Thus ATP systems, despite the name, are often used by domain 

experts in an interactive way. The interaction may be at a very detailed level, where the user 

guides the inferences made by the system, or at a much higher level where the user determines 

intermediate lemmas to be proved on the way to the proof of a conjecture. There is often a 

synergetic relationship between ATP system users and the systems themselves: 

 

 The system needs a precise description of the problem written in some logical form, 

 

 the user is forced to think carefully about the problem in order to produce an 

appropriate formulation and hence acquires a deeper understanding of the problem, 

 the system attempts to solve the problem, if successful the proof is a useful output, 

 if unsuccessful the user can provide guidance, or try to prove some intermediate 
result, or examine the formulae to ensure that the problem is correctly described, 

 and so the process iterates. 

 
ATP is thus a technology very suited to situations where a clear thinking domain expert can 

interact with a powerful tool, to solve interesting and deep problems. There are many ATP 

systems readily available for use. 
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UNIT II 

Relations 

 
Introduction 

 

The elements of a set may be related to one another. For example, in the set of natural numbers 

there is the less than‘ relation between the elements. The elements of one set may also be related 

to the elements another set. 

 

Binary Relation 

 

A binary relation between two sets A and B is a rule R which decides, for any elements, whether 

a is in relation R to b. If so, then we write a R b. If a is not in relation R to b, then a /R b. 

 

We can also consider a R b as the ordered pair (a, b) in which case we can define a binary 

relation from A to B as a subset of A X B. This subset is denoted by the relation R. 

 

In general, any set of ordered pairs defines a binary relation. 

 

For example, the relation of father to his child is F = {(a, b) / a is the father of b} In this relation 

F, the first member is the name of the father and the second is the name of the child. 

The definition of relation permits any set of ordered pairs to define a relation. 

For example, the set S given by 

S = {(1, 2), (3, a), (b, a) ,(b, Joe)} 

Definition 

The domain D of a binary relation S is the set of all first elements of the ordered pairs in the 

relation.(i.e) D(S)= {a / $ b for which (a, b) Є S} 

The range R of a binary relation S is the set of all second elements of the 

ordered pairs in the relation. (i.e) R(S) = {b / $ a for which (a, b) Є S} 

 

For example 

For the relation S = {(1, 2), (3, a), (b, a) ,(b, Joe)} 

D(S) = {1, 3, b, b} and 

R(S) = {2, a, a, Joe} 

Let X and Y be any two sets. A subset of the Cartesian product X * Y defines a relation, say 

C. For any such relation C, we have D( C ) Í X and R( C) Í Y, and the relation C is said to 

from X to Y. If Y = X, then C is said to be a relation form X to X. In such case, c is called a 

relation in X. Thus any relation in X is a subset of X * X . The set X * X is called a universal 

relation in X, while the empty set which is also a subset of X * X is called a void relation in 

X. 
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For example: Let L denote the relation ―less than or equal to< and D denote the relation ―divides< 

where x D y means ― x divides y< . Both L and D are defined on the set {1, 2, 3, 4} 

 

L = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4,4)} 

D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 

L Ç D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} = D 

 

Properties of Binary Relations: 

 

Definition: A binary relation R in a set X is reflexive if, for every x Є X, x R x, That is (x, x) Є 

R, or R is reflexive in X ó (x) (x Є X ® x R x). 

 
For example:- 

 The relation £ is reflexive in the set of real numbers. 

 The set inclusion is reflexive in the family of all subsets of a universal set. 

 The relation equality of set is also reflexive. 

 The relation is parallel in the set lines in a plane. 

 The relation of similarity in the set of triangles in a plane isreflexive. 

 

Definition: A relation R in a set X is symmetric if for every x and y in X, whenever x R y, then y 

R x.(i.e) R is symmetric in X ó (x) (y) (x Є X ٨ y Є X ٨ x R y ® y R x} 

 
For example:- 

 The relation equality of set is symmetric. 

 The relation of similarity in the set of triangles in a plane is symmetric. 

 The relation of being a sister is not symmetric in the set of all people. 

 However, in the set females it is symmetric. 

 

Definition: A relation R in a set X is whenever x R y and y R z , then x R z. (i.e) transitive if, for every 

x, y, and z are in X, R is transitive in X ó (x) (y) (z) (x Є X٨ y Є X٨ z Є X ٨x R y ٨ y R z ® x R z) 

 
For example:- 

 

 The relations <, £, >, ³ and = are transitive in the set of real numbers 

 The relations Í, Ì, Ê, É and equality are also transitive in the family of sets. 

 The relation of similarity in the set of triangles in a plane is transitive. 
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Definition: A relation R in a set X is irreflexive if, for every x Є X , (x, x)ÏX. 

For example:- 

< The relation < is irreflexive in the set of all real numbers. 

< The relation proper inclusion is irreflexive in the set of all nonempty subsets of a 

universal set. 

 Let X = {1, 2, 3} and S = {(1, 1), (1, 2), (3, 2), (2, 3), (3, 3)} is neither irreflexive nor 

reflexive. 

 
Definition: A relation R in a set x is anti symmetric if , for every x and y in X, 

whenever x R y and y R x, Then x = y. 

Symbolically,(x) (y) (x Є X ٨ y Є X ٨ x R y ٨ y R x ® x = y) 

 

For example 

 

 The relations £ , ³ and = are anti symmetric 

 The relation Í is anti symmetric in set of subsets. 

 The relation ―divides< is anti symmetric in set of real numbers. 

 Consider the relation ―is a son of< on the male children in a family. Evidently the 

relation is not symmetric, transitive and reflexive. 

 The relation ― is a divisor of ― is reflexive and transitive but not symmetric on the set of natural 

numbers. 

 Consider the set H of all human beings. Let r be a relation ― is married to ― 

R is symmetric. 

 Let I be the set of integers. R on I is defined as a R b if a – b is an even number. R is an reflexive, 

symmetric and transitive 

 

Equivalence Relation: 

 

Definition:A relation R in a set A is called an equivalence relation if 

 

o a R a for every i.e. R is reflexive 

o a R b => b R a for every a, b Є A i.e. R is symmetric 

o a R b and b R c => a R c for every a, b, c Є A, i.e. R is transitive. 

For example 

< The relation equality of numbers on set of real numbers. 

< The relation being parallel on a set of lines in a plane. 
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us consider the set T of triangles in a   plane.  Let us define a relation 
 

 

 

 

 

Problem1: Let 

R in  T as R= {(a, b) / (a, b Є T and a is similar to b} 

We have to show that relation R is an Equivalence relation 

Solution : 

 

< A triangle a is similar to itself. a R a 

< If the triangle a is similar to the triangle b, then triangle b is similar to the triangle a then 

a R b => b R a 

 

< If a is similar to b and b is similar to c, then a is similar to c (i.e) a R b and b R c => a R 

c. 

Hence R is an equivalence relation. 

 

Problem 2: Let x = {1, 2, 3, … 7} and R = {(x, y) / x – y is divisible by 3} Show that R is an 

equivalence relation. 

 

Solution: For any a Є X, a- a is divisible by 

3, Hence a R a, R is reflexive 

For any a, b Є X, if a – b is divisible by 3, then b – a is also divisible 

by 3, R is symmetric. 

For any a, b, c Є, if a R b and b R c, then a – b is divisible by 3 

and b–c is divisible by 3. So that (a – b) + (b – c) is also divisible by 

3, hence a – c is also divisible by 3. Thus R is transitive. 

Hence R is equivalence. 

 

Problem3 .Let Z be the set of all integers. Let m be a fixed integer. Two integers a and 

b are said to be congruent modulo m if and only if m divides a-b, in which case we write a º b (mod m). 

This relation is called the relation of congruence modulo m and we can show that is an equivalence relation. 

 

Solution : 

 

< a - a=0 and m divides a – a (i.e) a R a, (a, a) Є R, R is reflexive . 

< a R b = m divides a-b 

 

m divides b - a b º a (mod m) b R a that is R is symmetric. 

 
 a R b and b R c => a ºb (mod m) and bº c (mod m) O m divides a – b and m divides b-c 

O a – b = km and b – c = lm for some k ,l Є z 

O (a – b) + (b – c) = km+lm 

O a – c = (k +l) m 
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O aº c (mod m) 

O a R c 

O R is transitive 

 

Hence the congruence relation is an equivalence 

relation. 

 

Equivalence Classes: 

 

Let R be an equivalence relation on a set A. For any a ЄA, the equivalence class generated by a 

is the set of all elements b Є A such a R b and is denoted [a]. It is also called the R – equivalence 

class and denoted by a Є A. i.e., [a] = {b Є A / b R a} 

 
 

Let Z be the set of integer and R be the relation called ―congruence modulo 3< defined by 

R = {(x, y)/ xÎ Z Ù yÎZ Ù (x-y) is divisible by 3} 

Then the equivalence classes are 

[0] = {… -6, -3, 0, 3, 6, …} 

[1] = {…, -5, -2, 1, 4, 7, …} 

[2] = {…, -4, -1, 2, 5, 8, …} 

Composition of binary relations: 

 

Definition:Let R be a relation from X to Y and S be a relation from Y to Z. Then the relation R 

o S is given by R o S = {(x, z) / xÎX Ù z Î Z Ù y Î Y such that (x, y) Î R Ù (y, z) Î S)} 

is called the composite relation of R and S. 

The operation of obtaining R o S is called the composition of relations. 

 

Example: Let R = {(1, 2), (3, 4), (2, 2)} and 

S = {(4, 2), (2, 5), (3, 1),(1,3)} 

Then R o S = {(1, 5), (3, 2), (2, 5)} and S o R = {(4, 2), (3, 2), (1, 4)} 

It is to be noted that R o S ≠ S o R. 

Also Ro(S o T) = (R o S) o T = R o S o T 

Note: We write R o R as R2; R o R o R as R3 and so on. 

Definition 

Let R be a relation from X to Y, a relation R from Y to X is called the converse of  

R, where the ordered pairs of Ř are obtained by interchanging the numbers in each of the 

ordered pairs of R. This means for x Î X and y Î Y, that x R y ó y Ř x. 

Then the relation Ř is given by R = {(x, y) / (y, x) Î R} is called the converse 

of R Example: 

Let R = {(1, 2),(3, 4),(2, 2)} 

Then Ř = {(2, 1),(4, 3),(2, 2)} 

 

Note: If R is an equivalence relation, then Ř is also an equivalence relation. 
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Definition Let X be any finite set and R be a relation in X. The relation 

R+ = R U R2 U R3…in X. is called the transitive closure of R in X 

 

Example: Let R = {(a, b), (b, c), (c, a)}. 

Now R2 = R o R = {(a, c), (b, a), (c, b)} 

R3 = R2 o R = {(a, a), (b, b), (c, c)} 

R4 = R3 o R = {(a, b), (b, c), (c, a)} = R 

R5= R3o R2 = R2 and so on. 

 

Thus, R+ = R U R2 U R3 U R4 U… 

= R U R2 U R3. 

={(a, b),(b, c),(c, a),(a, c),(b, a),(c ,b),(a, b),(b, b),(c, c)} 

 

We see that R+ is a transitive relation containing R. In fact, it is the smallest 

transitive relation containing R. 

 

Partial Ordering Relations: 

 

Definition 

A binary relation R in a set P is called partial order relation or partial ordering in 

P iff R is reflexive, anti symmetric, and transitive. 

A partial order relation is denoted by the symbol £., If £ is a partial ordering on 

P, then the ordered pair (P, £) is called a partially ordered set or a poset. 

 

< Let R be the set of real numbers. The relation ―less than or equal to < or 

O , is a partial ordering on R. 

 

< Let X be a set and r(X) be its power set. The relation subset, Í on X is partial ordering. 

< Let Sn be the set of divisors of n. The relation D means ―divides<  on Sn ,is partial 

ordering on Sn . 

 

In    a partially    ordered    set (P, £) ,  an  element y Î P    is  said  to  cover  an element     x Î  P 

if   x <y  and   if there  does not exist   any  element z   Î   P such   that  x    £ z and  z    £ y;    

that is, y covers x Û (x < y Ù (x £ z £ y Þ x = z Ú z = y)) 

A partial order relation £ on a set P can be represented by means of a diagram known as 

a Hasse diagram or partial order set diagram of (P, £). In such a diagram, each element is 

represented by a small circle or a dot. The circle for x Î P is drawn below the circle for y Î P if x 

< y, and a line is drawn between x and y if y covers x. 

 

If x < y but y does not cover x, then x and y are not connected directly by a single line.However, 

they are connected through one or more elements of P. 
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Hasse Diagram: 

 

A Hasse diagram is a digraph for a poset which does not have loops and arcs implied by the 

transitivity. 

Example 10: For the relation {< a, a >, < a, b >, < a, c >, < b, b >, < b, c >, < c, c >} on set {a, 

b,c}, the Hasse diagram has the arcs {< a, b >, < b, c >} as shown below 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
  

 
 

Ex: Let A be a given finite set and r(A) its power set. Let Í be the subset relation on 

the elements of r(A). Draw Hasse diagram of (r(A), Í) for A = {a, b, c} 
 

 

 
 

 

 
 

Lattice and its Properties: 

Introduction: 

A lattice is partially ordered set (L, £) in which every pair of elements a, b ÎL has 

a greatest lower bound and a least upper bound. 

The glb of a subset, {a, b} Í L will be denoted by a * b and the lub by a Å b. 

. 

Usually, for any pair a, b Î L, GLB {a, b} = a * b, is called the meet or product and LUB{a, 

b} = a Å b, is called the join or sum of a and b. 
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Example1 Consider a non-empty set S and let P(S) be its power set. The relation Í 

―contained in< is a partial ordering on P(S). For any two subsets A, BÎ P(S) 

 

GLB {A, B} and LUB {A, B} are evidently A Ç B and A È B respectively. 

Example2 Let I+ be the set of positive integers, and D denote the relation of 

―division< in I+ such that for any a, b Î I+ , a D b iff a divides b. Then (I+, D) is a 

lattice in which 

the join of a and b is given by the least common multiple(LCM) of a and b, that is, 

a Å b = LCM of a and b, and the meet of a and b, that is , a * b is the greatest common 

divisor (GCD) of a and b. 

 

A lattice can be conveniently represented by a diagram. 

For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the 

relation ―division< such that for any a, b Î Sn, a D b iff a divides b. 

Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Å b = lcm(a, b). 

Take n=6. Then S6 = {1, 2, 3, 6}. It can be represented by a diagram in 

Fig(1). Take n=8. Then S8 = {1, 2, 4, 8} 

 

Two lattices can have the same diagram. For example if S = {1, 2, 3} then (p(s), Í ) and (S6,D) 

Have   the       same  diagram    viz.   fig(1),   but the nodes are differently labeled . 

We observe that for any partial ordering relation £ on a set S  the 

converse    relation ³   is    also   partial   ordering    relation   on  S.    If (S,    £) is   a   lattice 

With   meet    a *  b    and   join   a   Å   b ,     then    (S, ³ )   is  the  also       a  lattice with   meet 

a  Å   b   and   join  a   *   b   i.e.,   the  GLB and    LUB  get  interchanged    . Thus   we   have 

the principle of duality of lattice as follows. 

 

Any statement about lattices involving the operations ^ and V and the relations £ and ³ 

remains true if ^, V, ³ and £ are replaced by V, ^, £ and ³ respectively. 

The operation ^ and V are called duals of each other as are the relations £ and ³.. Also, 

the lattice (L, £) and (L, ³) are called the duals of each other. 

 

Properties of lattices: 

Let (L, £) be a lattice with the binary operations * and Å then for any a, b, c Î L, 

 

< a * a = a a Å a = a (Idempotent) 

< a * b = b * a, a Å b = b Å a (Commutative) 

< (a * b) * c = a * (b * c) , (a Å ) Å c = a Å (b Å c) 

O (Associative) < 

a * (a Å b) = a , a Å (a * b ) = a (absorption) 
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For any a ÎL, a £ a, a £ LUB {a, b} => a £ a * (a Å b). On the other 

hand, GLB {a, a Å b} £ a i.e., (a Å b) Å a, hence a * (a Å b) = a 

 
 

Theorem 1 

Let (L, £) be a lattice with the binary operations * and Å denote the operations of meet and 

join respectively For any a, b Î L, 

a £ b ó a * b = a ó a Å b = b 

Proof 

 

Suppose that a £ b. we know that a £ a, a £ GLB {a, b}, i.e., a £ a * b. 

But from the definition of a * b, we get a * b £ a. 

Hence a £ b => a * b = a  ………………………… (1) 

Now we assume that a * b = a; but is possible only if a £ b, 

that is a * b = a => a £ b ………………………… (2) 
From (1) and (2), we get a £ b ó a * b = a. 

Suppose a * b = a. 

then b Å (a * b) = b Å a = a Å b ……………………. (3) 

but b Å ( a * b) = b ( by iv)…………………….. (4) 

Hence a Å b = b, from (3) => (4) 

Suppose aÅ b = b, i.e., LUB {a, b} = b, this is possible only if a£ b, thus(3) => (1) 

(1) => (2) => (3) => (1). Hence these are equivalent. 

 
Let us assume a * b = a. 

Now (a * b) Å b = a Å b 

We know that by absorption law , (a * b) Å b = b 

so that a Å b = b, therefore a * b = a Þ a Å b = b (5) 

similarly, we can prove a Å b = b Þ a * b = a (6) 

From (5) and (6), we get 

a * b = a Û a Å b = b 

Hence the theorem. 

 

Theorem2 For any a, b, c Î L, where (L, £) is a lattice. b 

£ c => { a * b £ a * c and 

{ a Å b £ a Å c 

 

Proof Suppose b £ c. we have proved that b £ a ó b * c = b… ...... (1) 

Now consider (a * b ) * (a * c) = (a * a) * (b * c) 

= a * (b * c)(by Idempotent) 

= a * b (by (1)) 

Thus (a * b) * (a * c ) = a * b which => (a * b ) £ (a * 

c) Similarly (a Å b) Å ( a Å c) = (a Å a) Å (b Å c) 

= a Å (b Å c) 

= a Å c 

which => (a Å b ) £ (a Å c ) 

DM 30 

 



 

 
note:These properties are known as isotonicity. 

 
Functions 

 

Introduction 

A function is a special type of relation. It may be considered as a relation in which each 

element of the domain belongs to only one ordered pair in the relation. Thus a function from A  

to B is a subset of A X B having the property that for each a ЄA, there is one and only one  

b Є B such that (a, b) Î G. 

 

Definition 

Let A and B be any two sets. A relation f from A to B is called a function if for every a Є A 

there is a unique b Є B such that (a, b) Є f . 

 

Note that the definition of function requires that a relation must satisfy two additional 

conditions in order to qualify as a function. 

 

The first condition is that every a Є A must be related to some b Є B, (i.e) the domain 

of f must be A and not merely subset of A. The second requirement of uniqueness can be 

expressed as (a, b) Є f ٨ (b, c) Є f => b = c 

Intuitively, a function from a set A to a set B is a rule which assigns to every element of A, 

a unique element of B. If a ЄA, then the unique element of B assigned to a under f is 

denoted by f 

(a).The usual notation for a function f from A to B is f: A® B defined by a ® f (a) where a Є 

A, f(a) is called the image of a under f and a is called pre image of f(a). 

 

< Let X = Y = R and f(x) = x2 + 2. Df = R and Rf Í R. 

< Let X be the set of all statements in logic and let Y = {True, 

False}. A mapping f: X®Y is a function. 

< A program written in high level language is mapped into a machine language by a 

compiler. Similarly, the output from a compiler is a function of its input. 

 

< Let X = Y = R and f(x) = x2 is a function from X ® Y,and g(x2) = x is not a function 

from X ® Y. 

 

A mapping f: A ® B is called one-to-one (injective or 1 –1) if distinct elements of 

A are mapped into distinct elements of B. (i.e) f is one-to-one if 

a1 = a2 => f (a1) = f(a2) or equivalently f(a1) ¹ f(a2) => a1 ¹ a2 

For example, f: N ® N given by f(x) = x is 1-1 where N is the set of a natural numbers. 

A mapping f: A® B is called onto (surjective) if for every b Є B there is an a Є A 

such that f (a) = B. i.e. if every element of B has a pre-image in A. Otherwise it is called into. 

 
For example, f: Z®Z given by f(x) = x + 1 is an onto 

mapping. A mapping is both 1-1 and onto is called 

bijective 
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. 

For example f: R®R given by f(x) = X + 1 is bijective. 

 

Definition: A mapping f: R® b is called a constant mapping if, for all aÎA, f (a) = 

b, a fixed element. 

For example f: Z®Z given by f(x) = 0, for all x ÎZ is a constant mapping. 

 

Definition 

A mapping f: A®A is called the identity mapping of A if f (a) = a, for all aÎA. 

Usually it is denoted by IA or simply I. 

 

Composition of functions: 

 

If f: A®B and g: B®C are two functions, then the composition of functions f and g, 

denoted by g o f, is the function is given by g o f : A®C and is given by 

g o f = {(a, c) / a Є A ٨ c Є C ٨ $bÎ B ': f(a)= b ٨ g(b) 

= c} and (g of)(a) = ((f(a)) 

 

Example 1: Consider the sets A = {1, 2, 3},B={a, b} and C = 

{x, y}. Let f: A® B be defined by f (1) = a ; f(2) = b and 

f(3)=b and Let g: B® C be defined by g(a) = x and g(b) = y 

(i.e) f = {(1, a), (2, b), (3, b)} and g = {(a, 

x), (b, y)}. Then g o f: A®C is defined by 

(g of) (1) = g (f(1)) = g(a) = x 

(g o f) (2) = g (f(2)) = g(b) = y 

(g o f) (3) = g (f(3)) = g(b) = y 

i.e., g o f = {(1, x), (2, y),(3, y)} 

If f: A® A and g: A®A, where A= {1, 2, 3}, are given by 

f = {(1, 2), (2, 3), (3, 1)} and g = {(1, 3), (2, 2), (3, 1)} 

Then g of = {(1, 2), (2, 1), (3, 3)}, fog= {(1, 1), (2, 3), (3, 2)} 

f of = {(1, 3), (2, 1), (3, 2)} and gog= {(1, 1), (2, 2), (3, 3)} 

 

Example 2: Let f(x) = x+2, g(x) = x – 2 and h(x) = 3x for x Î R, where R is the set of 

real numbers. 

Then  f o f = {(x, x+4)/xÎ R} 

f o g = {(x, x)/ x Î X} 

g o f = {(x, x)/ xÎ X} 

g o g = {(x, x-4)/x Î X} 

h o g = {(x,3x-6)/ x Î X} 

h o f = {(x, 3x+6)/ x Î X} 
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Inverse functions: 

Let f: A® B be a one-to-one and onto mapping. Then, its inverse, denoted by f -1 is given 

by f - 1 = {(b, a) / (a, b) Î f} Clearly f-1: B® A is one-to-one and onto. 

 

Also we   observe   that   f   o  f   -1 =   IB   and   f  -1o   f = IA. 

If f -1 exists then f is called invertible. 

 

For example:Let f: R ®R be defined by f(x) = x + 2 

Then f -1: R® R is defined by f -1(x) = x - 2 

 

Theorem: Let f: X ®Y and g: Y ® Z be two one to one and onto functions. Then gof is also 

one to one and onto function. 

Proof 

Let f:X ® Y g : Y ® Z be two one to one and onto functions. Let x1, x2 Î X 

 
< g o f (x1) = g o f(x2), 

< g (f(x1)) = g(f(x2)), 

< g(x1) = g(x2) since [f is 1-1] 

 

x1 = x2 since [ g is 1-1} 

so that gof is 1-1. 

By the definition of composition, gof : X ® Z is a function. 

We have to prove that every element of z Î Z an image element for some x Î X 

under gof. 

Since g is onto $ y ÎY ': g(y) = z and f is onto from X to Y, 

$ x ÎX ': f(x) = y. 

Now, gof (x) = g ( f ( x)) 

= g(y) [since f(x) = y] 

= z [since g(y) = z] which shows that gof is onto. 

 
Theorem (g o f) -1 = f -1 o g -1 (i.e) the inverse of a composite function can be expressed in terms of 

the composition of the inverses in the reverse order. 

 

Proof. f: A ® B is one to one and onto. g: B ® C is one to one and onto. 

gof: A ® C is also one to one and onto. Þ (gof) -1: 

C ® A is one to one and onto. 

Let a Î A, then there exists an element b Î b such that f (a) = b Þ a = f-1 

(c). Now b Î B Þ there exists an element c Î C such that g (b) = c Þ b = g - 1(c). 

Then (gof)(a) = g[f(a)] = g(b) = c Þ a = (gof) -1(c). ......... (1) 

(f -1 o g-1) (c) = f -1(g -1 (c)) = f -1(b) = a Þ a = (f -1 o g -1)( c 

) ….(2) Combining (1) and (2), we have (gof) -1 = f -1 o g -1 
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Theorem: If f: A ® B is an invertible mapping , 

then f o f -1 = I B and f-1 o f = IA 

Proof: f is invertible, then f -1 is defined by f(a) = b ó f-1(b) 

= a where a Î A and bÎ B . 

Now we have to prove that f of -1 = IB 

. Let bÎ B and f -1(b) = a, a Î A 

then fof-1(b) = f(f-1(b)) 

= f(a) = b 

therefore f o f -1 (b) = b " b Î B => f o f -1 = 

IB Now f -1 o f(a) = f -1 (f(a)) = f -1 (b) = a 

therefore f -1 o f(a) = a " a Î A => f -1 o f = IA. 

Hence the theorem. 

 
Recursive Functions: 

 

The term "recursive function" is often used informally to describe any function that is defined 

with recursion. There are several formal counterparts to this informal definition, many of which 

only differ in trivial respects. 

 
Kleene (1952) defines a "partial recursive function" of nonnegative integers to be any function   
that is defined by a noncontradictory system of equations whose left and right sides are 

composed from 

(1) function symbols (for example, , , , etc.), (2) variables for nonnegative integers (for 

example, , , , etc.), (3) the constant 0, and (4) the successor function  . 

For example, 

                                           (1) 

                                      (2) 

                                           (3) 

                            (4) 

 
defines  to be the function that computes the product of and . 

 

Note that the equations might not uniquely determine the value of  for every possible input, and 

in that sense the definition is "partial." If the system of equations determines the value of f for 

every input, then the definition is said to be "total." When the term "recursive function" is used 

alone, it is usually implicit that "total recursive function" is intended. Note that some authors use 

the term "general recursive function to mean partial recursive function, although others use it to 

mean "total recursive function." 

 

The set of functions that can be defined recursively in this manner is known to be equivalent to 

the set of functions computed by Turing machines and by the lambda calculus. 
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Algebraic structures 

 
Algebraic systems: 

 

An algebraic system, loosely speaking, is a set, together with some operations on the set. 

Before formally defining what an algebraic system is, let us recall that a n -ary operation 

(or operator) on a set A is a function whose domain is An and whose range is a subset of A . 

Here, n is a non- negative integer. When n=0 , the operation is usually called a nullary 

operation, or a constant, since one element of A is singled out to be the (sole) value of this 

operation. A finitary operation on A is just an n -ary operation for some non-negative 

integer n . 

 

Definition. An algebraic system is an ordered pair (A O) , where A is a set, called the 

underlying set of the algebraic system, and O is a set, called the operator set, of finitary 

operations on A . 

 

We usually write A , instead of (A O) , for brevity. 

 

A prototypical example of an algebraic system is a group, which consists of the underlying set G 

, and a set O consisting of three operators: a constant e called the multiplicative identity, a 

unary operator called the multiplicative inverse, and a binary operator called the 

multiplication. 

For a more comprehensive listing of examples, please see this entry. 

Remarks. 

< An algebraic system is also called algebra for short. Some authors require that A be 

non-empty. Note that A is automatically non-empty if Ocontains constants. A finite 

algebra is an algebra 

whose underlying set is finite. 

< By definition, all operators in an algebraic system are finitary. If we allow O to contain 

infinitary operations, we have an infinitary algebraic system. Other generalizations are 

possible. For example, if the operations are allowed to be multivalued, the algebra is said 

to be a multialgebra. If the operations are not everywhere defined, we get a partial 

algebra. Finally, if more than one underlying set is involved, then the algebra is said to be 

many-sorted. 

 

The study of algebraic systems is called the theory of universal algebra. The first important 

thing in studying algebraic system is to compare systems that are of the same ``type''. Two 

algebras are said to have the same type if there is a one-to-one correspondence between 

their operator sets such that an n -ary operator in one algebra is mapped to an n -ary 

operator in the other algebra. 
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Examples: 

 

Some recurring universes: N=natural numbers; Z=integers; Q=rational numbers; 

R=real numbers; C=complex numbers. 

 

N is a pointed unary system, and under addition and multiplication, is both the 

standard interpretation of Peano arithmetic and a commutative semiring. 

 

Boolean algebras are at once semigroups, lattices, and rings. They would even be 

abelian groups if the identity and inverse elements were identical instead of 

complements. 

 

Group-like structures 

 
< Nonzero N under addition (+) is a magma. 

< N under addition is a magma with an identity. 

< Z under subtraction (−) is a quasigroup. 

< Nonzero Q under division (÷) is a quasigroup. 
−1 * b, and y * a = b if 

< Every group is a loop, because a * x = b if and only if x = a 

−1 

and only if y = b * a . 

< 2x2 matrices(of non-zero determinant) with matrix multiplication form a group. 

< Z under addition (+) is an abelian group. 

< Nonzero Q under multiplication (×) is an abelian group. 

m n m+n n+m 

< Every cyclic group G is abelian, because if x, y are in G, then xy a   = a = a = 

= a 

n m 

a a = yx. In particular, Z is an abelian group under addition, as is the integers modulo n 

Z/nZ. 

< A monoid is a category with a single object, in which case the composition of 

morphisms and the identity morphism interpret monoid multiplication and 

identity element, respectively. 

< The Boolean algebra 2 is a boundary algebra. 

 

General Properties: 

 

Property of Closure 

 

If we take two real numbers and multiply them together, we get another real number. (The real 

numbers are all the rational numbers and all the irrational numbers.) Because this is always true, 

we say that the real numbers are "closed under the operation of multiplication": there is no way 

to escape the set. When you combine any two elements of the set, the result is also included in 

theset. 
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Real numbers are also closed under addition and subtraction. They are not closed under the 

square root operation, because the square root of -1 is not a real number. 

 

Inverse 

 

The inverse of something is that thing turned inside out or upside down. The inverse of an 

operation undoes the operation: division undoes multiplication. 

 

A number's additive inverse is another number that you can add to the original number to get the 

additive identity. For example, the additive inverse of 67 is -67, because 67 + -67 = 0, the 

additive identity. 

 

Similarly, if the product of two numbers is the multiplicative identity, the numbers are 

multiplicative inverses. Since 6 * 1/6 = 1 (the multiplicative identity), the multiplicative inverse 

of 6 is 1/6. 

 

Zero does not have a multiplicative inverse, since no matter what you multiply it by, the answer 

is always 0, not 1. 

 

Equality 

 

The equals sign in an equation is like a scale: both sides, left and right, must be the same in order 

for the scale to stay in balance and the equation to be true. 

 

The addition property of equality says that if a = b, then a + c = b + c: if you add the same 

number to (or subtract the same number from) both sides of an equation, the equation continues 

to be true. 

 

The multiplication property of equality says that if a = b, then a * c = b * c: if you multiply (or 

divide) by the same number on both sides of an equation, the equation continues to be true. 

 

The reflexive property of equality just says that a = a: anything is congruent to itself: the equals 

sign is like a mirror, and the image it "reflects" is the same as the original. 

 

The symmetric property of equality says that if a = b, then b = a. 

 

The transitive property of equality says that if a = b and b = c, then a = c. 

 
Semi groups and monoids: 

 

In the previous section, we have seen several algebraic system with binary operations. 

Here we consider an algebraic system consisting of a set and an associative binary operation on 

the set and then the algebraic system which possess an associative property with an identity 

element. These algebraic systems are called semigroups and monoids. 
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Semi group 

Let S be a nonempty set and let * be a binary operation on S. The algebraic system (S, *) 

is called a semi-group if * is associative 

if a * (b*c) = (a * b) * c for all a, b, c Î S. 

 

Example The N of natural numbers is a semi-group under the operation of usual addition 

of numbers. 

 

Monoids 

Let M be a nonempty set with a binary operation * defined on it. Then (M, * ) is called 

a monoid if 

 

 * is associative 

 

(i.e) a * (b * c) = (a * b) * c for all a, b, c Î M and 

there exists an element e in M such that 

a * e = e * a = a for all a Î M 

e is called the identity element in (M,*). 

 

It is easy to prove that the identity element is unique. From the definition it follows that (M,*) is 

a semigroup with identity. 

 

Example1 Let S be a nonempty set and r(S) be its power set. The algebras (r(S),U) and (r(S), Ç ) 

are monoids with the identities f and S respectively. 

 

Example2 Let N be the set of natural numbers, then (N,+), (N, X) are monoids with the 

identities 0 and 1 respectively. 

 

Groups Sub Groups: 

Recalling that an algebraic system (S, *) is a semigroup if the binary operation * is associative. If 

there exists an identity element e Î S, then (S,*) is monoid. A further condition is imposed on the 

elements of the monoid, i.e., the existence of an inverse for each element of S then the algebraic 

system is called a group. 

Definition 

Let G be a nonempty set, with a binary operation * defined on it. Then the algebraic 

system (G,*) is called a group if 

 * is associative i.e. a * (b * c) = (a * b) * c for all a, b, c,Î G. 

 there exists an element e in G such that a * e = e * a = a for all a Î G 

 for each a Î G there is an element denoted by a-1 in G such that 

a * a-1 = a-1 * a = e, a-1 is called the inverse of a. 

From the definition it follows that (G,*) is a monoid in which each element has an inverse w.r.t. 

* in G. 
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A group (G,*) in which * is commutative is called an abelian group or a commutative 

group. If * is not commutative then (G,*) is called a non-abelian group or non-commutative 

group. 

 

The order of a group (G,*) is the number of elements of G, when G is finite and is denoted 

by o(G) or |G| 

 

Examples 1. (Z5, +5) is an abelian group of order 5. 

2. G = {1, -1, i, -i} is an abelian group with the binary operation x is 

defined as 1 x 1 = 1, -1 x -1 = 1, i x i = -1 , -i x -i = 1, … 

 

Homomorphism of semigroups and monoids 

Semigroup homomorphism. 

 

Let (S, *) and (T, D) be any two semigroups. A mapping g: S ® T such that 

any two elements a, b Î S , g(a * b) = g(a) D g(b) is called a semigroup 

homomorphism. 

 

Monoid homomorphism 

Let (M, *,eM) and (T, D,eT) be any two monoids. A mapping g: M® T such that 

any two elements a, b Î M , 

g(a * b) = g(a) D g(b) 

and g(eM) = eT 

is called a monoid homomorphism. 

 

Theorem 1 Let (s, *) , (T, D) and (V, Å) be semigroups. A mapping g: S ® T and 

h: T ® V be semigroup homomorphisms. Then (hog): S ® V is a 

semigroup homomorphism from (S,*) to(V,Å ). 

 
Proof. Let a, b Î S. Then 

(h o g)(a * b) = h(g(a* b)) 

= h(g(a) D g(b)) 

= h(g(a)) Å h(g(b)) 

= (h o g)(a) Å (h o g)(b) 

 

Theorem 2 Let (s,*) be a given semigroup. There exists a homomorphism g: S ® 

SS, where (SS, o) is a semigroup of function from S to S under the 

operation of composition. 

 
Proof For any element a Î S, let g(a) = fa where f aÎ SS and f a is defined by 

f a(b) = a * b for any a, bÎ S 

g(a * b) = f a*b 

Now   f a*b(c ) = (a * b) * c = a*(b * c) 

where = f a(f b(c )) = (f a o f b) (c ). 
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Therefore, g(a * b) = f a*b = f a o f b = g(a) o g(b), this shows that g: S ® 

SS is a homomorphism. 

 

Theorem 3 For any commutative monoid (M, *),the set of idempotent elements of M 

forms a submonoid. 
 

Proof. Let S be the set of idempotent elements of M. 

Since the identity element e Î M is idempotent, e Î S. 

Let a, b Î S, so that a* a = a and b * b = b 

Now (a * b ) * (a * b) = (a * b) * (b * a) [( M, *) is a commutative monoid ] 

= a * (b * b) * a 

= a * b * a 

= a * a * b 

= a * b 

Hence a * b Î S and (S, *) is a submonoid. 

 
 

Isomorphism: 

−1 

In abstract algebra, an isomorphism is a bijective map f such that both f and its inverse f are 

homomorphisms, i.e., structure-preserving mappings. In the more general setting of category 

theory, an isomorphism is a morphism f: X → Y in a category for which there exists an 

"inverse" 
−1 

: Y → X, with the property that both f 
f−1 

f = idX and f −1 = idY. 
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